Environmental DNA (eDNA)

What eDNA can do for you, and how you can begin utilizing this powerful tool within your watershed

James Garner - PhD Student at UMass Amherst Co-advised by: Michelle Staudinger and Adrian Jordaan

Photo Credit: Jimmy Powell

My Background

• Previously worked with the Massachusetts Division of Marine Fisheries (MA DMF) as a Biological Fisheries Technician

My Background

 1st year of PhD – I worked part time as the Ecology Program Director for the Jones River Watershed Association (where eDNA projects began)

• DNA sourced from environmental samples, rather than directly from an organism

- DNA sourced from environmental samples, rather than directly from an organism
- examples: soil
 - (Ancient DNA)

- DNA sourced from environmental samples, rather than directly from an organism
- examples: soil, water

- DNA sourced from environmental samples, rather than directly from an organism
- examples: soil, water, air

- DNA sourced from environmental samples, rather than directly from an organism
- examples: soil, water, air, honey!

Ribani *et al*. 2020

- DNA sourced from environmental samples, rather than directly from an organism
- examples: soil, water, air, honey!
- Like a genetic NOSE for a given environment

• For a given TIME and PLACE, an eDNA sample can give us data about:

For a given TIME and PLACE, an eDNA sample can give us data about:
Biodiversity

- For a given TIME and PLACE, an eDNA sample can give us data about:
 - Biodiversity
 - Species presence

- For a given TIME and PLACE, an eDNA sample can give us data about:
 - Biodiversity
 - Species presence
 - Relative abundance*

* Technique for calculating relative abundance is still being refined and requires calibration to other established techniques

Application	Outcome

Application	Outcome
Detecting species presence	Rare or endangered species confirmation

Application	Outcome
Detecting species presence	Rare or endangered species confirmation
	Non-Indigenous Species Detection $ ightarrow$ Implementing RAD protocols

Application	Outcome
Detecting species presence	Rare or endangered species confirmation
	Non-Indigenous Species Detection $ ightarrow$ Implementing RAD protocols
	Detecting shifts in phenology and species ranges in real time

Application	Outcome
Detecting species presence	Rare or endangered species confirmation
	Non-Indigenous Species Detection $ ightarrow$ Implementing RAD protocols
	Detecting shifts in phenology and species ranges in real time
	Track species responses to human induced stressors like climate change and habitat degradation

Application	Outcome
Detecting species presence	Rare or endangered species confirmation
	Non-Indigenous Species Detection $ ightarrow$ Implementing RAD protocols
	Detecting shifts in phenology and species ranges in real time
	Track species responses to human induced stressors like climate change and habitat degradation
Biodiversity/community structure assessment	Establish a modern eDNA biodiversity baselines

Application	Outcome
Detecting species presence	Rare or endangered species confirmation
	Non-Indigenous Species Detection $ ightarrow$ Implementing RAD protocols
	Detecting shifts in phenology and species ranges in real time
	Track species responses to human induced stressors like climate change and habitat degradation
Biodiversity/community structure assessment	Establish a modern eDNA biodiversity baselines
	Understanding ecosystem response to restoration or climate adaptation action

S AN

-

a fillen

Photo Credit: Jimmy Powell – JRWA SmugMug

Application	Outcome
Detecting species presence	Rare or endangered species confirmation
	Non-Indigenous Species Detection $ ightarrow$ Implementing RAD protocols
	Detecting shifts in phenology and species ranges in real time
	Track species responses to human induced stressors like climate change and habitat degradation
Biodiversity/community structure assessment	Establish a modern eDNA biodiversity baselines
	Understanding ecosystem response to restoration or climate adaptation action
Estimates of species density/abundance	Provide a low-cost supplement or alternative to other methods

The eDNA workflow has four basic steps:

The eDNA workflow has four basic steps:

- Collection
 - Any expert, citizen scientist, or volunteer can easily collect eDNA water samples!

The eDNA workflow has four basic steps:

- Collection
 - Any expert, citizen scientist, or volunteer can easily collect eDNA water samples!
- This is a perfect step to get communities and citizen scientists involved with a project!

Aman, J., Kinnison PhD, M. T., Holmes, V., & Gottsegen, C. (2020). Developing Cost Effective Monitoring for Rainbow Smelt Using eDNA.

The eDNA workflow has four basic steps:

- Collection
 - Any expert, citizen scientist, or volunteer can easily collect eDNA water samples!
- Filtration

Photo Credit: Jimmy Powell

The eDNA workflow has four basic steps:

- Collection
 - Any expert, citizen scientist, or volunteer can easily collect eDNA water samples!
- Filtration
- Extraction

The eDNA workflow has four basic steps:

- Collection
 - Any expert, citizen scientist, or volunteer can easily collect eDNA water samples!
- Filtration
- Extraction
- Analysis

The two types of eDNA approaches I use:

The two types of eDNA approaches I use:

For both approaches, the first THREE steps are (basically) the same

Two common eDNA approaches:

Single species monitoring

Two common eDNA approaches:

Single species monitoring

 After sample collection, filtration, and amplification, a technique known as Quantitative PCR (qPCR) is used to quantify DNA in a given sample

Two common eDNA approaches:

Single species monitoring

- After sample collection, filtration, and amplification, a technique known as Quantitative PCR (qPCR) is used to quantify DNA in a given sample
- Uses *species-specific* primers to capture target DNA

Single species monitoring

- After sample collection, filtration, and amplification, a technique known as Quantitative PCR (qPCR) is used to quantify DNA in a given sample
- Uses *species-specific* primers to capture target DNA
- Can be used to estimate species abundance *

Single species monitoring

- After sample collection, filtration, and amplification, a technique known as Quantitative PCR (qPCR) is used to quantify DNA in a given sample
- Uses *species-specific* primers to capture target DNA
- Can be used to estimate species abundance *

/////////

Single species monitoring

- After sample collection, filtration, and amplification, a technique known as Quantitative PCR (qPCR) is used to quantify DNA in a given sample
- Uses *species-specific* primers to capture target DNA
- Can be used to estimate species abundance *

Biodiversity (muti-species) monitoring

Single species monitoring

- After sample collection, filtration, and amplification, a technique known as Quantitative PCR (qPCR) is used to quantify DNA in a given sample
- Uses *species-specific* primers to capture target DNA
- Can be used to estimate species abundance *

Biodiversity (muti-species) monitoring

 After sample collection, filtration, and amplification, a technique known as eDNA Metabarcoding is used to assess biodiversity by comparing the DNA collected within the sample to a genomic database

Single species monitoring

- After sample collection, filtration, and amplification, a technique known as Quantitative PCR (qPCR) is used to quantify DNA in a given sample
- Uses *species-specific* primers to capture target DNA
- Can be used to estimate species abundance *

Biodiversity (muti-species) monitoring

- After sample collection, filtration, and amplification, a technique known as eDNA Metabarcoding is used to assess biodiversity by comparing the DNA collected within the sample to a genomic database
- Uses *universal* primers to target all relevant species within sample

Biodiversity (muti-species) monitoring

- After sample collection, filtration, and amplification, a technique known as eDNA Metabarcoding is used to assess biodiversity by comparing the DNA collected within the sample to a genomic database
- Uses *universal* primers to target all relevant species within sample

1	METABARCODING DATA						
2	Taxon	sb	lr	hb	1b	2b	3b
4	American eel	1	1	1	1	0	1
5	american shad	0	0	0	0	0	0
6	Atlantic tomcod	0	0	0	0	0	0
7	blueback herring	0	1	0	0	0	1
8	brook trout	0	0	0	1	0	1
9	hickory shad	0	0	0	0	0	0
10	rainbow smelt	0	1	0	0	0	0
11	sea lamprey	0	0	0	0	0	1
12	striped sea-bass	0	0	0	0	0	0
13	white perch	0	0	0	0	0	0
14	Atlantic herring	0	0	0	0	0	0
15	Atlantic silverside	0	0	0	0	0	0
16	fourspine stickleback	0	0	0	0	0	0
17	grubby sculpin	0	0	0	0	0	0
8	haddock	0	0	0	0	0	0
19	menhaden	0	0	0	0	0	0
20	mummichog	0	0	1	0	0	0
21	ninespine stickleback	0	0	0	0	0	0
22	rock gunnel	0	0	0	0	0	0
23	sheepshead minnow	0	0	1	0	0	0
24	striped killifish	0	0	0	0	0	0
25	winter flounder	0	0	0	0	0	0
26	black crappie	0	0	0	0	0	0
27	black crappie or rock bass	1	1	1	1	0	1
28	bluegill sunfish	1	1	1	1	0	1
29	brown bullhead	0	1	0	0	0	0
30	chain pickerel	1	1	1	1	0	1

What can eDNA tell us?

- Species presence
- Biodiversity
- Estimates of abundance (calibrated)

What can eDNA tell us?

- Consider what your data is telling you compared to other traditional monitoring techniques
 - What are some other traditional ways we monitor aquatic life?

What can eDNA tell us?

- A good way to think about eDNA is to consider EXACTLY what your data is telling you compared to other traditional monitoring techniques
 - What are some other traditional ways we monitor aquatic life?

What can eDNA tell us?

- A good way to think about eDNA is to consider EXACTLY what your data is telling you compared to other traditional monitoring techniques
 - What are some other traditional ways we monitor aquatic life?

What can eDNA tell us?

- A good way to think about eDNA is to consider EXACTLY what your data is telling you compared to other traditional monitoring techniques
 - What are some other traditional ways we monitor aquatic life?

Things eDNA can't tell you

Things eDNA can't tell you

• Absolute abundance

Things eDNA can't tell you

- Absolute abundance
- Age and Growth structure for fish populations

Things eDNA can't tell you

- Absolute abundance
- Age and Growth structure for fish populations
- What life stage your DNA signal came from (yet)

eDNA is a SUPPLEMENT to ongoing monitoring practices, not a replacement.

Strengths/Weaknesses

Strengths/Weaknesses

Pros:

- Cost effective
- Less upfront effort
- More accessible than traditional ecological monitoring
- Non-invasive/destructive
- Rare, shy, and cryptic species detection
- Field constantly being refined
- Novel applications emerging regularly

Strengths/Weaknesses

Pros:

- Cost effective
- Less upfront effort
- More accessible than traditional ecological monitoring
- Non-invasive/destructive
- Rare, shy, and cryptic species detection
- Field constantly being refined
- Novel applications emerging regularly

Cons:

- False positives/negatives common
- Controversial (abundance estimates)
- Barrier to entry for downstream analyses (after sample collection/filtration) extremely high
- Still a new field requiring refinement

Known biases

eDNA monitoring techniques have limits and sampling biases.

The importance of calibration

Figure SF8. Correlation between species richness observations from conventional surveys and eDNA metabarcoding for freshwater (red, n=104) and marine systems (blue, n=17). The line represents a 1:1 relationship.

Chambert et al. 2017

McElroy et al. 2020

One more time...

eDNA monitoring techniques are not meant to REPLACE other monitoring strategies, but to ENHANCE ongoing monitoring efforts

eDNA monitoring techniques are not meant to REPLACE other monitoring strategies, but to ENHANCE ongoing monitoring efforts

or

eDNA monitoring techniques are not meant to REPLACE other monitoring strategies, but to ENHANCE ongoing monitoring efforts

or

Provide an accessible and affordable starting point for watershed, biodiversity, and species monitoring efforts

eDNA monitoring is a "Force Multiplier" for other monitoring efforts

Determining IF your restoration/adaptation action met its intended goals

- Pre/post dam removal monitoring through time
- Pre/post fishway installation monitoring, etc.

Diadromous Fish Species Diversity Pre and Post Mainstem Dam Removal

Determining how far upstream river herring are making it into your watershed

Whether or not river herring are making it upstream of fish ladders

https://www.nsrwa.org/protect-our-waters/healthy-rivers/dam-removals/south-river-restoration/

When EXACTLY river herring are arriving to your watershed, how long they stay, and when they have all left (sampling through time)

Robbins Pond	
Snipatuit Pond	
Long Pond	
Billington Sea	
Furnace Pond	
Oldham Pond	
Great Herring Pond	
Cedar Lake	
Pilgrim Lake	
Johns Pond	
Santuit Pond	
Lower Millpond Pond	
Upper Mill/Walkers Pond	
Gull Pond	
Coonamessett Pond	
Whitmans Pond	
Chebacco Lake	
Pentucket Pond	
Upper Mystic Lake	
Lower Mystic Lake	
12 - 121 - 12	1 . 14 . 192 . 193 . 193 . 193 . 199 . 199 . 19 . 19

Rosset, J., Roy, A. H., Gahagan, B. I., Whiteley, A. R., Armstrong, M. P., Sheppard, J. J., & Jordaan, A. (2017). Temporal patterns of nigration and spawning of river herring in coastal Massachusetts. *Transactions of the American Fisheries Society*, *146*(6), 1101-1114.

If river herring are entering your watershed from other locations

• other inlet streams to a headwater pond, for example

Biodiversity and community structure of:

- Prey species
- Habitat/plant community structure
- Aquatic pathogens
- Freshwater competitors

Provide low-cost biological evidence for permitting

Things to consider: Implementing eDNA in your watershed

Implementing eDNA in your watershed

• What monitoring is already going on in your watershed?
- What monitoring is already going on in your watershed?
- What question are you asking/where are the knowledge gaps?

- What monitoring is already going on in your watershed?
- What question are you asking/where are the knowledge gaps?
- Hydrologic characteristics (lake, pond, stream, estuary, marine?)

- What monitoring is already going on in your watershed?
- What question are you asking/where are the knowledge gaps?
- Hydrologic characteristics (lake, pond, stream, estuary, marine?)
- 1 species or many?

- What monitoring is already going on in your watershed?
- What question are you asking/where are the knowledge gaps?
- Hydrologic characteristics (lake, pond, stream, estuary, marine?)
- 1 species or many?
- Time series/sampling locations

 Build your own capacity – invest in qPCR (single species) testing equipment

- Build your own capacity invest in qPCR (single species) testing equipment
 - Many field/turnkey kits available a bit complicated to implement

- Build your own capacity invest in qPCR (single species) testing equipment
 - Many field/turnkey kits available a bit complicated to implement
 - A Google search for "eDNA field sampler" will yield several options

- Build your own capacity invest in qPCR (single species) testing equipment
 - Many field/turnkey kits available a bit complicated to implement
 - A Google search for "eDNA field sampler" will yield several options
- Ship frozen water samples or preserved (filtered) samples to a lab

Some New England based Labs you can work with:

University of Maine, Kinnison Lab

https://umaine.edu/evoappslab/people/dr-michael-kinnison/

UMaine eDNA website: https://umaine.edu/edna/

Contact: Geneva York: <u>geneva.york@maine.edu</u>

University of New Hampshire, Hubbard Center for Genome Studies

https://hcgs.unh.edu

Contacts: Krystalynne Morris: <u>krystalynne.morris@unh.edu</u> Kelley Thomas: <u>kelley.thomas@unh.edu</u>

What's it going to cost me?

(shipping and handling not included)

What's it going to cost me?

(shipping and handling not included)

Biodiversity (Metabarcoding): Roughly between \$2,000 and \$3,000 for 96 samples

What's it going to cost me?

(shipping and handling not included)

Biodiversity (Metabarcoding): Roughly between \$2,000 and \$3,000 for 96 samples

> Single Species (qPCR): Less than \$20 per sample

Some of my ongoing work

Some of my ongoing work

The Goal of my PhD research is to make eDNA tools and techniques more accessible, and to get them in the hands of the people, communities, and managers who can use them the most.

Some of my ongoing work

 Project 1: Using eDNA biodiversity methods to measure restoration action efficacy in a coastal New England watershed

of 3: Detecting population (read; river) specific is signatures of American shad using eDNA liques that are currently being developed.

encing, filtration, comparing novel eDNA biodiversity encing, filtration, and preservation techniques to https://www.letd.deployable.biodiversity filtration.

Project 1: Using eDNA biodiversity methods to measure restoration action efficacy in a coastal New England watershed

Some of my ongoing work

Project 2: Calibrating eDNA abundance metrics to established methods (electronic herring counters, fyke net surveys, purse seine surveys, and electrofishing surveys)

Some of my ongoing work

 Project 3: Detecting population (read; river) specific genetic signatures of American shad using eDNA techniques that are currently being developed

Project 4:

Developing a field deployable, affordable, equitable, and accessible eDNA biodiversity monitoring kit

Project being tested/validated in conjunction with the Town of Plymouth, MA in preparation for an upcoming dam bypass project

microbial and restoration

estoration monitoring

Some of my ongoing work

- Project 1: Using eDNA biodiversity methods to measure restoration action efficacy in a coastal New England watershed
- Project 2: Calibrating eDNA abundance metrics to established methods (electronic herring counters, fyke net surveys, purse seine surveys, and electrofishing surveys)
- Project 3: Detecting population (read; river) specific genetic signatures of American shad using eDNA techniques that are currently being developed
- Project 4: Validating/comparing novel eDNA biodiversity sequencing, filtration, and preservation techniques to develop a turn-key, field deployable biodiversity monitoring system

Resources and Literature

- Aman, J., Kinnison PhD, M. T., Holmes, V., & Gottsegen, C. (2020). Developing Cost Effective Monitoring for Rainbow Smelt Using eDNA.
- Armbrecht, L. H. (2020). The potential of sedimentary ancient DNA to reconstruct past ocean ecosystems. *Oceanography*, 33(2), 116-123.
- **Chambert**, T., Pilliod, D. S., Goldberg, C. S., Doi, H., & Takahara, T. (2018). An analytical framework for estimating aquatic species density from environmental DNA. *Ecology and evolution*, *8*(6), 3468-3477.
- **Cristescu**, M. E., & Hebert, P. D. (2018). Uses and misuses of environmental DNA in biodiversity science and conservation. *Annual Review of Ecology, Evolution, and Systematics, 49,* 209-230.
- Clare, E. L., Economou, C. K., Bennett, F. J., Dyer, C. E., Adams, K., McRobie, B., ... & Littlefair, J. E. (2022). Measuring biodiversity from DNA in the air. *Current Biology*.
- <u>https://jonesriver.smugmug.com/</u>
- <u>https://www.nsrwa.org/protect-our-waters/healthy-rivers/dam-removals/south-river-restoration/</u>
- Lynggaard, C., Bertelsen, M. F., Jensen, C. V., Johnson, M. S., Frøslev, T. G., Olsen, M. T., & Bohmann, K. (2022). Airborne environmental DNA for terrestrial vertebrate community monitoring. *Current Biology*.
- McElroy, M. E., Dressler, T. L., Titcomb, G. C., Wilson, E. A., Deiner, K., Dudley, T. L., ... & Jerde, C. L. (2020). Calibrating environmental DNA metabarcoding to conventional surveys for measuring fish species richness. *Frontiers in Ecology and Evolution*, 276.
- **Ribani**, A., Utzeri, V. J., Taurisano, V., & Fontanesi, L. (2020). Honey as a source of environmental DNA for the detection and monitoring of honey bee pathogens and parasites. *Veterinary sciences*, 7(3), 113.
- **Roger**, F., Ghanavi, H., Danielsson, N., Wahlberg, N., Löndahl, J., Pettersson, L. B., ... & Clough, Y. (2021). Airborne environmental DNA metabarcoding for the monitoring of terrestrial insects-a proof of concept. *BioRxiv*
- **Rosset**, J., Roy, A. H., Gahagan, B. I., Whiteley, A. R., Armstrong, M. P., Sheppard, J. J., & Jordaan, A. (2017). Temporal patterns of migration and spawning of river herring in coastal Massachusetts. *Transactions of the American Fisheries Society*, *146*(6), 1101-1114.

Thank you!!!

For references, contacts, or any questions, please don't hesitate to reach out!

Contact Information: JGGarner@umass.edu